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Part 1: One-Way Model

The th of p laboratories makes n; repeated
measurements of the same quantity.

The laboratories make measurements with
different precisions.

The selected laboratories can be regarded
as a random sample from a population (i.e.,
they're exchangible).

The Problem

How should one estimate the ‘grand
mean’ and between-laboratory vari-
ance?




Example #1: Arsenic in Oyster Tissue
(NIST Standard Reference Material
1566a)

Arsenic in SRM 1566a:
Means and 95% Confidence Intervals
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Example #2: Dietary Fiber
Li and Cardozo (1994)
J. Of AOAC Int., 77, p. 689

Nine labs each measures fiber in six foods, in
blind duplicates. We will use individual foods
for one-way examples, and return to full two-
way table later.

Sample LLaboratory
1 2 O
Apples 12.44 12.87 12.08
12.48 13.20 12.38
Apricots 25.05 27.16 25.31
25.58 26.29 25.43
FIBRIM 74.07 76.55 73.96
75.01 78.36 74.24




Dietary Fiber in Apricots
Li and Cardozo (1994)

x; 82-2
25.32 0.37
26.72 0.62
27.839 0.35
27r.70 1.85
27.42 0.61
24.30 0.21
27.11 0.37
27.28 0.09

25.37 0.08
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Mean: x = 26.567

Weighted Means:

MP

GD
ANOVA
MLE

26.472
26.164
26.420
27.275



Plot Of Within-Lab. Standard Deviations
vs. Lab. Means for Apricot Fiber Data

Apricot Fiber Data Summary Statistics
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Statistical Framework:
One-Way, Unbalanced, Heteroscedastic
Random-Effects ANOVA

e Laboratory sample means x; distributed in-
dependently normal with mean p and vari-
ance o2 + 72, where 72 = o2 /n;.

e Expected mean for :th laboratory is also

normal, with mean p and variance o2.

e Sufficient statistics z; and t? = s2/n;.

If z;; denotes the jth measurement from the
1th lab, then

Tij = p+ b + e,
where b; ~ N (0,02) and e;; = N (0,02); mutu-
ally independent.



Cochran’s Publications on Combining
Experiments

e (1937), “Problems Arising in the Analysis of a Se-
ries of Similar Experiments’ .

e (1938), “The Analysis of Groups of Experiments”,
(with F. Yates).

e (1954), “The Combination of Estimates From Dif-
ferent Experiments”.

e (1980), “Summarizing the Results of a Series of
Experiments’ .

e (1981), “Estimators for the One-Way Random Ef-
fects Model With Unequal Error Variances”, (et.
al., posthumous).



Maximum Likelihood
(Cochran, 1937)

Let wz = 1/(6?4+72), v; = n;—1, and determine
o, 7- , and p to satisfy
2 > 1t
(4) wi—wP(ai— ) +vi (L) =0

i T

Ez_lwzmz
(C) h=SE

Note that (B) may have multiple roots. Cochran
(1937) proposed setting 77 = t? and solving
(B) for o2, then using (C).
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The Loglikelihood Function:
A Better Parametrization

Define weights by

o2

o2+ 72-2

The loglikelihood becomes

p ~;
2¢ = > n;log (—é)

i

: Uit2
SpE | CEP
i=1 — V1
p
- ZV2|09(1_72)+K
1=1

Differentiate this with respect to parameters
,u,02 and v;,t =1,...,p.
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ML Equations

p p
D=1 Vi D i q Wik

> Vi D i Wi

I/Z't-2
Sh=1 i | (@i — )? + =

p
27;21 n;

0'2:

v — (@i +2)77 +
[((n; + 1Da; + (n; — 1)b; + 1]

—n;a; — 0
where
A =
' (mz — 'u)2
and
+2
bz' — L >
(xz — :LL)
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Result #1.:
Monotone Convergence to Stationary
Points of the Likelihood

e For any starting values pg, o3, maximize
the likelihood over the weights by solving
the cubics. (If there are multiple real roots,
choose the one which causes the biggest
increase in the likelihood.)

o Let
42
, S | (s — pw)? + fz_tfyz
o] = SP
=1 """
_ > i Vit
H Zle Yz

solve for new weights, and iterate.

e [ hisiteration, regardless of starting values,
always converges to a stationary point of
the likelihood, and increases the likelihood
at each step.
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Result #2:
Location of Stationary Values of the
Likelihood

e At a stationary point of the likelihood,

52 — 2521 ’)’22(5132 — M)Q
2521 Vi

hence

e A/l of the stationary points of the likeli-
hood u© and ¢ are within the rectangle in
the (u,0) plane given by

min(z;) < g < max(x;)
/ /
and

0 <o <max(z;) —min(x;).
(4 (4

e After the appropriate location-scale trans-
formation of the data, it is only necessary
to search the unit square in the (u, o) plane
for stationary values.
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Lab. 6 an Outlier for Apricot

Profile Likelihood, Apricot Fiber:
T AlLabs

Lik.
¢, 00.20.40.60.8 1

Profile Likelihood, Apricot Fiber:
Not Lab

e

Lik.
" 0 0.20.40.60.8 1

Data
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Outlier Labs. for Cabbage Data

Prof. Lik., Cabbage Fiber:
All Labs

Prof. Lik., Cabbage Fiber:

Not Labs 6, 9

Prof. Lik., Cabbage Fiber:
Not Lab

Prof. Lik., Cabbage Fiber:
Not Labs 6, 9, 1
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Result #3:
Location of the Roots of Cubic
Equations for Weights (~;)

e Each cubic likelihood equation has one or
three roots ~; € [0, 1].

e A necessary condition for three roots is
that

(x; — p)2 > max(o?/q;, t2/h;),
where

. 1 . 1 n@—l T
g = —2—64/n;SIN< — |[SiN — —
3 n; 2

8
= O -2
27n; + O

and
1—gq)3 1
hi_( )

)
= 27— 1) 27m, T O

e [ hese values g; and h; are the smallest for
which this is necessary.
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Outline of Proof of Result #3 (The
subscript ¢ is omitted for clarity.)

e Descartes’ rule of signs applied to the orig-
inal equation and to

¢+ (1 —a)p® +v(a+b)e+vb=0,

where ¢ = v — 1 shows that

e the number of roots in [0,1] is 1 or 3.
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Proof of #3, Continued

e Assume three roots r; of ‘4" equation and
roots d; = r; — 1 of ‘¢’ equation in [0, 1].

e Quadratic coefficient of a monic cubic equals
negative of sum of roots, and constant
term equal negative of product of roots.

e From '+’ equation

3
2
<a,-:|3)— ) > na, Or

f(a) = a3+ 64?4+ (12 —-27n)a+8> 0,

where f(a) has one negative root, one greater than
1, and one (q) in (0,1/n), given earlier.

e From the ‘¢’ equation:

(1;“>3 > (n— 1)b.

When evaluated at ¢, this completes the derivation
of the necessary condition.
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Proof of #3, Concluded

The region in the (a,b) plane which corresponds
to three real roots is bounded by the locus of
(a,b) pairs for which the discriminant is zero,
and as a consequence two or three of these
real roots coincide. At the upper-right-hand
corner of the rectangle [0,q] x [0,h] the two
inequalities on the previous transparency be-
come equalities, the three real roots are equal,
and the discriminant is zero. Any smaller rect-
angle must exclude (a,b) pairs for which the
discriminant is positive, and hence for which
there will be three roots in [0,1].
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A Comment on Homoscedastic Models

e If we require that the ‘within’ variances
be equal, than we still have the likelihood
equations

Zi Yi
p . . 2 vit?
5 | Lui=1 Yi [(mz — )+ 1,
o = P .
=1l

e [ he weights can be parametrized as

u

- u—+ (1 —u)%’

for 0O < u < 1. Maximizing the likelihood
reduces to maximizing with respect to u.
In particular, all of the stationary points
of the likelihood must be on a curve in
the (u,0) plane, and one need not be con-
cerned about negative solutions for the vari-
ances.

Vi

21



Hierarchical Model With Noninformative

Priors
1= 1,...,p indexes laboratories
73 =1,...,n; indexes measurements

p(zijl6;,07) N (8;, 07)
p(o;) < 1/0;

p(5i|,u7 02) = N (:UH 02)
p(p) = 1
p(o) = 1
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Arsenic Data Posterior for u:
c=0and p=1

If c =0 and p=1, then

p(u{z;},0 =0) = gTﬁq (5/?/2

Posterior for Lab #1

|

Probability
15 2.0 25

1.0

0.5

0.0

9.2 9.4 9.6 9.8 10.0 10.2 10.4
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Arsenic Data Posteriors for the First Four
Labs, Given 0 =0

Lab#1
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Posterior for c =0, p>1

Given o = 0, then the posterior distribution
of the consensus mean u is proportional to a
product of scaled t-densities:

b 1 T: — L
p(pl{zij},0 =0) o< [[ =71 ( 7’ )
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Posterior of u for Arsenic Data Given

oc=20

T he posterior is proportional to the product of
the appropriate t-densities, centered at each
lab average ;.

Individual t-Densities Given
Between-Labh. S.D. =0

(q\V]
> —
§ ©
o] O
o
a <
N /‘»"';
6 8 10 12 14 16 18
Scaled Product of t-Densities
N Between-Lab S.D. =0
—
P
% 0
8 ©
© «
o (qV]
o
6 8 10 12 14 16 18

26



The General Case: 0 >0

In general, p(u|o, {z;;}) is proportional to a prod-
uct of the distributions of the random variables

Ui =x; + —'niTni—1 +o0Z,
Si

where T,,. 1 is a t-distributed random variable

with n; — 1 degrees of freedom, Z is distributed

N (0,1), and T;,,_1 and Z are independent.

27



A Useful Probability Density

Let 7, and Z denote independent Student-t
and standard normal random variables, and as-
sume that ¢» > 0 and v > 0. Then

_ v

2
<u+1>/2—1e—y{1+m}

1 /Ooy
,V/2ﬁ 0 Vy + v

has density

fv(u;¥) = dy.
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Posterior of (u,o)

Assume &; ~ N (u,02), o ~ p(o),
p(p) =1, p(o;) = 1/0;.

Then the posterior of (u,o) is

L1 T;— p 202
pnol{eig)) <o) T1 4 hms | %220
i=1 i i

1

The posterior of u given ¢ = 0 is a prod-
uct of scaled t-densities centered at the x;,
since

1 T; — [ L T; — |
— [ 0| = -1, _ :
t fnZ 1 [ t ] . n;—1 ( t

We will take p(o) = 1, though an arbitrary
proper prior does not introduce additional
difficulties.
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Probability

Probability

Marginals for u and o:
Arsenic Data

Marginal Posterior of Mean With
5% Probability Interval

1.2

0.0

10 11 12 13 14 15

Mean
Post. mean = 13.23 Post. S.D. = 0.297 12.599 < mean < 13.78

Marginal Posterior of Between-Lab. S.D. With
95% Probability Interval

Lo
—
o
—
Lo
o
o
o
0 1 2 3 4 5
e ard_Deviation

- . d viati
Post. mean = 1. .S.D.= 0.247 1.027 < sigma< 1.981
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Approximate Confidence Regions: Apple
Fiber Data

1.5

0.0

11

Between-Lab. Stand. Dev.

Probability
0.0 06 1.2

11 12 13 14
Mean
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Probability

Probability
00 02 04 06 0.8

0.6

0.4

0.0

Approximate Confidence Intervals:
Apricot Fiber Data

Marginal Posterior of Mean With
5% Probability Interval

22 24 26 28 30

Mean
Post. mean = 26.499 Post. S.D. = 0.587 25.246 < mean < 27.588

Marginal Posterior of Between-Lab. S.D. With
95% Probability Interval

0 2 4 6

Between-Lab. Standard Deviation
Post. mean = 1.438 Post. S.D. = 0.558 0.633 < sigma < 2.763
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Small Simulation Comparing
Bayesian and Frequentist Intervals

p = 0
o; = Oe
o + ag = 1
p = 02/(02+02) =1/2

Simulation Comparing Confidence Intervals
(5 Groups of 5, rho=.5, mu=0, sigma =1)

Replicate

15

10

5

Confidence Intervals
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Part 2: Two-Way Mixed Model
Multiple Materials and Multiple
Laboratories

e Each of p laboratories makes repeated measure-
ments of m materials.

e T he number of measurements made can differ among
the laboratories, but each material is measured the
same number of times by each laboratory.

e T he within-laboratory variances can differ.

e [ he selected |laboratories can be regarded as a ran-
dom sample from an infinite population of labora-
tories.

How should one estimate ‘consensus’ values for
the quantities measured, and what are the un-
certainty in this estimates?
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Dietary

Apples

Fiber: 9

Labs, 6 Foods, 2 Replicates

Li/Cardoza Dietary Fiber Study

3 & 8g 88 8 8
5 5 5 5
247527 5 2 774 21257‘1 2 775 " 5 2 7 7
1g 3 ¢ R 19 3 1 3 p1 g4
6 79 3 9 o3 9 3 8 9 3
6 6
Apricots 4 ’ 4 ’
1%} 3 3 3 3
5 5 5 5
o 3
7 7 7
L 25 & 2 5 &% 288 g 5 28 8,
% 2 4 2 4 2 4 4 2
1 1 1
e 0 1 9 93 ¢
6 6 6
Cabbage 4 4 4
9 o 77 g8 8lg7 8 87 7
=3 25 2 25
s 4 1 4 1 4
8 2 5 3 s 2 ° 3 52
o 4 3 1 9 1 3
9 9
3 3
Carrots 8g a 48 38
® 775 5 5 7 7
° 2 4 24 2
T
8 § ¢ F1
6
Onions 4
3
2 s 4 %
S pe 7
o 2 P 8 7
o 11
D
FIBRIM
vangel41]
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Residuals

-4

-5

Block Plot

of Fiber Data

Li/Cardoza Dietary Fiber Study
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3 8
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41 s 87 4 54 7 s 5
o, 8 2 5 2, ) g7 a
b 31 3 2
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9 °o °© o 1
1 9 6
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9
6
6
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Food Type

mean block plot res food lab
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Two-Way Mixed Model
(Heteroscedastic no Interaction)

Tijk = Ok + i + ek,

e :=1,...,p Laboratories
e =1,...,n; Replicates
e k=1,...,m Materials

5; ~ N (0,0%)

e;jk ~ N (0,07)

Some notation: 72 = o?/(ny;m), v; = nym — 1.
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Two-Way Model: Likelihood

Model:
Tij = Op 1+ 0i + ek,
Likelihood:
_5.2/20-2 n; m ( 9, _5 )2/2 5
L o / e Lijk—Yk—04 g; dd:
H < \Jo2(a2)mim 1:[1 kl;ll Z

Z. —0)2
xp |~y
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ML Equations

6, 7= She1 (Eig — i) /77
z:gi)=1 1/Tz'2

7— > i1 Vii..
Zle %)

Zle n;
Where 7'2 - E/(nzm), v; = mn; — 1,
Vi = 02/(0 + TZ-Q), and

0'2:

t7

S ik(@ije — Tig)? + 1 Sp(Fig — Tie + 0 — 0;)?

V;n;m
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ML Equations (Cont’d)

The weights {y;}}_; are roots of the cubic
equations

v = (ai +2)77 +
[((nym + 1)a; + v;b; + 1] ; —

nz-ai — O

where

and

41



An ML Iteration

1. Begin with estimates {72-(8)}.

2. Calculate the following:

¢(3+1) — Zle (fi-k—fi..)/v'f(s)
k

o b 1/7'-2(8)
gis+1) — Xiz1 %-(S%Ez'--
Zf:l %'(8)
S Vit'2
Zfz;:l’)’i( )[(mi—M)Q‘Fl 23)]
2 _ 7
0(8+1) - Zf:l n;

3. Note that if the ¢, are constrained to sat-
isfy the above ML equation, then

2 _ Yik(@ije — %)% — Y o5 /m

(

n;V;m

4. Solve the cubics for new estimates 72-(8+1),

and iterate.
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Some Theoretical Results for Two-Way
Mixed Model

The one-way results discussed earlier general-
ize:

e Monotone convergence

e All stationary values of likelihood in box in
(0, Sk #2) space.

e Exactly one weight ~; € [0,1], unless ith
lab an outlier and n; small

e Variances cannot be negative at solution
to likelihood equation.
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Hierarchical Model With Noninformative
Priors: Two-Way Model

1= 1,...,p indexes laboratories
7 =1,...,n; indexes measurements

k=1,...,m indexes materials

p(%gk|5z> Hka 07,2) N (57, + Hka 0_22)

p(o;) o< 1/o;
p(8;lp,0%) = N(u,07)
p(0) = 1
p(oc) = 1
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Posterior of (u,o):
Two-Way Model

The posterior of ({6},0) is

,LLQO']
! 2 *
t;

p({ek} Jl{wwk}) x p(o) H fVZ [

where f,(-,0) is the and

Sik(@ije — Tig)? + i Sk (@i — T + 0 — )2

V;n;m

t

t7

We will take p(o) = 1.
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Normalized Lab. Effect

An Example Posterior Calculation

Credible Intervals for {§;/0}

(BUGS):

95% Credible Intervals
for Normalized Lab. Effects

L —

S —

4 6
Laboratory
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Summary

Using a simple parametrization, ML (and
REML) calculations for one- and two-way
heteroscedastic models are straightforward.
All stationary values of the likelihood can
be determined.

Investigation of multi-modal likelihoods can
(at least for the one-way model) lead to
useful insight into the data.

Bayesian calculations by numerical integra-

tion are straighforward for the one-way model.

Work on the two-way table is in progress.
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